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ABSTRACT

A Monte Carlo test particle code is used to calculate the temperature
difference between the central cell and end cell of a tandem mirror. The
electron power input is through drag of hot ions in the end cell. It is found
that the temperature difference increases as the mean free path becomes
comparable to the system length. At long mean free paths, the temperature
difference agrees with a previous analytical model. The calculation explains

the temperature variation measured in the TMX experiment.



I. INTRODUCTION

The understanding of electron heat transport along magnetic field lines
is important for open-ended systems, such as magnetic mirrors, where field
lines strike material surfaces or where thermal isolation of different energy
groups is desired [1]. The two descriptions of this process are the short
mean-free-path conduction model given by Spitzer 2] and the long mean-free-
path model of Cohen et al. [3]. The latter description is generally valid for
high-temperature fusion-oriented devices.

We shall show that finite mean-free-path effects can cause significant
departures from the theory of Ref. [3] when the mean free path, Ac’ is a few

times the device length, L The calculation is performed using a Monte Carlo

q°
test particle code [U4]. To be specific, we consider parameters relevant to
the tandem mirror experiment TMX [5] where measured differences between the
electron temperature in the central cell and end 2ell of roughly 2 indicates
partial thermal isolation. The results should be relevant to other low
temperature tandem mirrors such as Phaedrus [6] and GAMMA-6 [7].

We find that the temperature difference between the central cell and end
cell in TMX can be explained without invoking an electrostatic thermal barrier
. 1] between the cells. Although no barrier was observed in TMX [5], its
existence cannot be entirely ruled out because of diagnostic uncertainty.
There are experimental measurements in a low density plasma column [8] showing
that an electrostatic barrier can form to separate two populations of
electrons at different energies. Also, such a barrier has been intentionally
produced in the TMX-U experiment [9] using electron cyclotron resonance

heating. If an electrostatic barrier did somehow occur in TMX, the
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temperature difference between the two cells would be even larger than
calculated in this paper.

Our results show an enhanced isclation or reduced thermal transport as
the plasma density is increased. Such an effect occurs because the heating
power from electron drag in the end cell scales as density squared whereas the
power loss by transport to the central cell begins to scale linearly with

density, n, at high density. For AC >> L Ref. [3] predicts the energy loss

dl
2

scales as n , yielding a temperature difference independent of density.

The plan of the paper is as follows. In Sec. II the geometry and

numerical model are presented. The numerical results are given in Sec. III,

and an interpretation of the results is presented in Sec. IV.

II. GEOMETRY AND NUMERICAL MODEL

A. Axial Profiles

We consider a simple tandem mirror magnetic field configuration of the
type found in the TMX experiment [5]. Figure 1 shows the axial profiles where
we focus on variations in the end cell. There the ion density 1s made up

mostly of hot neutral beam injected ions whose axial profile is taken as
2, 2
nih(s) =N, exp [-(s se) /Lp] (1)

where s = se corresponds to the midplane of the end cell. The mean hot ion
energy is Eih' The central cell ions have a lower energy of 3 Tic/2 and are

confined by the electrostatic potential of the end cell. Their density has

the form



nic(s) = n,, exp [-e¢(s)/Tic] (2)

for s < s, andn, =mn, (s ) for s> s . Here d®(s) is the electrostatic
e ic ic e e

potential.

The electron density profile is determined by quasineutrality,

ne(s) = nih(S) + nic(S)' The potential is found from the inertialess electron

pressure balance equation

d
T TR @ (3)

Wwhere B is the magnetic field strength. The effective electron temperatures
are defined in terms of the corresponding mean parallel and perpendicular

energies, i.e., TH = “E” and Ti = EL' Thus, Eq. (3) is not restricted to

Maxwellian distribution. Given T” l(s) one can use Egs. (1)-(3) to find ne(s)

and ¢(s).

B. Evolution of the Test Electrons

The determination of T”,l(s) in the end cell from test electrons is the
central goal of our calculations. An iterative procedure is used where
initial guesses for density and temperature profiies are updated by test
particle data.

The electron source is assumed to be in the central cell, and the
electrons there are taken as a Maxwellian with temperature Tec' Thus, the
test electrons are injected in the central cell as a right-going Maxwellian
distribution at the left-hand boundary (see Fig. !). The temperature TeC is

assumed given and fixed for all iterations. In a real device, most electrons



escape through the left-hand mirror back into the central cell because of the
high potential at the right-hand mirror. For simplicity, we reflect all
electrons at the right-hand mirror. We thus neglect the influence of the loss
boundary for escape out of the device. However, the dominate power loss for
end cell electrons is escape to and capture in the cooler central cell. Each
escaping electron is replaced by a source electron to maintain zero current
flow.

The axial orbits of the test electrons are followed in the plug region
for small time steps using conservation of magnetic moment and total energy,
together with ds/dt = v”, where v” is the velocity along s. At each time
step, the electrons are also scattered in velocity space by Coulomb collisions
using a Monte Carlo technique [4]. The scattering coefficients depend on the
local density and temperature of the Maxwellian "background" species doing the

scattering [2]. The ion species are fixed for all iterations. For the first

iteration, the temperature of the "background" electrons, Teb' is taken from
assumed profiles for parallel and perpendicular energy, E” and EL'

T, (3) = 2LEj(s) + E (s)1/3 (4)
For the first iteration, we let 2E“ = E = T(s), where T(s) is an initial

guess for the temperature profile.

At the end of an iteration, new profiles for E”,L(s) are available from
the test electrons. However, we do not update the background energy profiles
to have the same mean energy as the test electrons but instead choose the
profile which gives no energy transfer between the background and test
electrons. This distinction arises because the test electrons are composed of

trapped and passing distributions at different Ltemperatures rather than a
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single Maxwellian distribution. Consequently, there is a non-physical power

transfer, P between the background electrons and the test electrons if one

bt'

uses Eq. (4) directly with a single "background" Maxwellian. This power can

be comparable to the actual power to the electrons, P[ from the hot ions via

)

drag where

(5)

Here Am is the area of a flux tube at s = Sg B(s) is the magnetic field

_ 7.3/2 -3 . . .
strength, and n 1y = 4.4 x 10 TS [em “s] for T  in eV. It is the localized
power from the hot ions which results in the end-cell electron energy being
higher than in the central cell. The non-physical power transfer can be
numerically measured by calculating the local power transferred from the

background electrons to the test electrons, giver by

mn (s)

e e
2t

2 2
P = 2 2 5o
bt(s) 1 ( vi<Av“>i + <Av”>i + <Avl oAty (6)

t

Here the indice i runs over all the time steps, Ati, of the particle
associlated with the spatial grid cell at s, vy is the particle velocity,
tt = ; Ati’ m is the electron mass, and the scattering coefficients with the
angle brackets are given elsewhere [2].

To reduce Pbt to zero, we calculate the effective local temperature
difference, ATe, between the test electrons and the background electrons using

the formula for power transfer between two electron species [2].

Specifically,



AT (s) = EEE - £ ot
% 7 Teqgat T 3 Tegq ne(s)

where © = 3.2 x 10" 1372
eq e

(eV)/ne(cm_3) [s1 for ATe << Te. After calculating
ATe at the end of one iteration, the temperature used in the Coulomb scatter

coefficients for the next iteration is a modification of Eq. (3)

T, = 2(E, + E[)/e + AT . (8)
After the second iteration, this procedure reduces the volume-integrated
non-physical power transfer to a sufficiently low level that the physical hot
ion drag power 1is an order of magnitude larger. A steady state is reached

when T“ l(s) and ATe(s) stop changing, typically four to five iterations.

It should be noted that the procedure just described for eliminating the
power transfer to the background electrons is the first step to obtaining a
self-consistent collision model. It is still possible that there is non-
physical power transfer between different groups of electrons at a given
point. An improved model would involve solving the nonlinear Fokker-Planck by
expanding in moments of the distribution function. Because we obtain close

agreement with analytic theory for the long mean-free-path limit (see

Sec. III), it is believed that the procedure used here is sufficient.

III. NUMERICAL RESULTS

To illustrate the effect of finite mean free path on the end-cell-to-

central-cell temperature ratio, we use parameters associated with the TMX
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tandem mirror experiment [5]. The base-case densities used to model the
. 13 -3 2 -3

experiment are nho = 1.5 x 10 cm and nOO = 2.5 x 10 cm T; we shall keep

the ratio of the end-cell-to-central-cell density fixed at 6 but vary the

densities to show scaling. Other parameters are the hot .on scale length

Lp = 15 cm, E.lh = 13 keV, and Tic = 50 eV. The central cell electron

temperature is fixed at 40 eV.

The plasma density falls to a low value before reaching the right-hand
mirror throat at s = Se + 57 cm (see Fig. 1) because the ion density is only
composed of escaping ions there. Consequently, the number of test electrons
reaching the throat is small and the statistical fluctuation in the calculated
energy can be large. We thus reflect the electrons at = = Se + 40 cm where
the density is a factor ~50 lower than the midplane value. The collisional
processes which would occur between s = se + 40 em and the mirror throat are
negligibly small owing to the low density.

The steady-state profiles obtained for T”,l(s) and ¢(s) after 5
iterations are shown in Fig. 2 for the base-case densities. Note that there
is a slight anisotropy with Tl > T”. This occurs because in the magnetic well
the colder passing electrons from the central cel! contribute more to the
parallel than perpendicular energy. Alsc, electrons with mostly perpendicular
energy are better confined and less likely to pe 2xchanged for central-cell
electrons.

The contour plot of the electron distribution furction f in Fig. 3
lllustrates the points just discussed. The plot czorresponds to the end-cell
midplane, s = Sge The separatrix between trappec and passing electrons shows
the cooler passing central cell electron population with more closely spaced

contours; each contour corresponds to a decrease in the value of f by a factor
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of 1.39. The trapped and passing distributions are closely fit by Maxwellians
at temperature Tep(O) and Tec' respectively.

In Fig. 4, we show the value of ATe(s) as calculated from Eq. (7). For
the parameters used, the omission of ATe in Eg. (8) would result in a
non-physical power transfer to the background electrons comparable to the drag
power input.

The effect of varying the density on Tep(O) and ¢(0) is shown in Fig. 5;
the ratio nho/nCO = 6 for all cases. The fact that both increase with density
is the principle result of this study. Shown for comparison is the value of
Tep(O) predicted from the long mean-free-path theory _3], which is independent
of density. This value can be calculated from Eqs. (31) and (32) of Ref. [3]

~

or estimated from Fig. 7 of that paper. The :nput power parameter, P, scales

~

inversely with Tep and directly with ion energy; bounce averaging reduces P

9l
because the drag power density is proportional to n". For the parameters

~

here, p

#

140, and extrapolating from Fig. 7 of Ref. [3] for nb/np = 1/6 gives

T /T
ec’ ep

!

0.65, or Tep = 62 eV. The corresponding potential is ¢ = 98 V.
Note that the numerical results appear to be approaching these values at low

density. For the TMX experiment [5], np = 1.5 x 1013 cm-3, and TeC = U9 eV,

87 eV for a ratio Tec/Tep = 1.8. Figure 5 yields the ratio

"

and T
ep

2.1,

o

Tep/TeC Thus, the temperature difference observed in TMX is consistent

with Coulomb collisions alone in the absence f a thermal barrier.

Iv. DISCUSSION AND SUMMARY

The main result of this paper is that the temperature difference between
a trapped population of electrons and a passing population becomes a function

of density at moderate mean free paths (XC <3 Ld) resulting in an increase in
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the temperature difference. For the problem we have considered, the device
length, Ld’ is given by the length of the end cell, ~100 cm. The mean free

path for electron-electron collisions is

A, = 5 x 10" Ti/ne [em] (9)
for Te in eV and ne in cm—3. For the low density point in Fig. 5, we find
ALy = 6, and the theoretical prediction of Ref. [3] is a good fit. For the
density of TMX, np = 1.5 x 1013 and XC/Ld = 2; there is then a significant
departure of Tep from Ref. [3].

As the mean free path becomes shorter, the characteristics of the passing
distribution can be significantly altered such that the portion returning to
the central cell will have a mean energy part way between those of the trapped
and passing distributions. Thus, deviations from Ref. [ 3] should be expected.
On the other hand, it was shown previously [10] that for AC/Ld ~ 1, the
Spitzer thermal conductivity over estimates the thermal flux by a large
factor. A better fit to this parameter regime was found to be the energy flux
at the mirror throat calculated as though right-going and left-going particles

have the temperature TeC and Tep' respectively. This yields an energy flux

given by [10]

ch vtc At (Tep - Tec
Q = — 75 (10)
e 1T+ (T /T )
ec’ "ep
where v = (2T /m )1/2 and A, is the area at the mirror throat
Le ec’ e t ? )

Equation (10) gives an upper bound on the amount of heat flux escaping

into the central cell as the left-going distribution will at most have a
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temperature Tep, but generally less. Note that Eq. (10) scales as density
whereas the energy transfer terms for Ac >> LG scale as n2 [see Eq. (29) of
Ref. 3)]. Thus, as the density is increased, the heat flow will be restricted
by Egq. (10) as it is an upper bound. When Eg. (10) is set equal to the power

input from drag, Eq. (%), we have a nonlinear equation for Te

2
2 - . p
nc Vtc (Tep Tec) - nho Ehl (“/2,1/2 0 (11)
JTRO1+ (T /T )% Mo Tg P
m ec ep

The drag rate T4 is evaluated using Tep, and Bm = Am/At is the mirror ratio.
The solution to this equation is plotted as a dotted line on Fig. 5. Because
Eq. (10) is an upper bound on the heat flux, the dotted line for Tep is a
lower bound. Thus, a least above np = U4 x 1013 cm—3, the calculated value of
Tep must be greater than the long mean-free-path value from Ref. [3]. The
points lie significantly above the dotted line¢ because the distribution
returning to the central cell has a temperature less than Te

We thus find the result that as one approaches a shorter mean-free-path
plasma, the thermal isolation of the end cell improves. Such behavior is

similar to that of the product of the density and particle confinement time,

nrp, which also increases as the mean free path becomes shorter [4].
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FIGURE CAPTIONS

Fig.

Fig.

Fig.

Fig.

Fig.

Axial profiles at the end cell of a tandem mirror. The densities

niC and nih correspond to those of cold and hot ions, respectivel

and B is the magnetic field.

Test electron data of perpendicular and parallel electron

temperatures Tl and T together with axial potential, ¢, for the

base case with nho = 1.5 x 1013 cm~3 after 5 iterations.

Electron distribution function at end-cell midplane (s = se)
corresponding to Fig. 2. The passing distribution is below the
separatrix line.

Electron temperature increment calculated from Eq. (7) to obtain
zero power transfer between test and background electrons for
conditions of Fig. 2.

Calculated end-cell electron temperature, Tep’ and potential, ¢,
various end-cell densities for constant ratio nho/nco = 6. The

solid line is the long-mean-free path theory of Ref. 3 and the

dotted line is the lower bound from Eq. (11).
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